
A Study on Size-Optimal Longest Edge
Refinement Algorithms

Carlos Bedregal and Maŕıa-Cecilia Rivara

Department of Computer Science, University of Chile
{cbedrega,mcrivara}@dcc.uchile.cl

Mesh generation and refinement are widely used in applications that require
a decomposition of geometric objects for processing. Longest edge refinement
algorithms seek to obtain a better decomposition over selected regions of the
mesh by the division of its elements. Until now, these algorithms did not
provide theoretical guarantees on the size of the triangulation obtained. In this
paper we present a study of the computational cost of longest edge bisection
algorithms for 2-dimensional mesh refinement and our developments in the
theoretical analysis of such algorithms.

1 Introduction

Mesh generation is widely used in many applications that require a decompo-
sition of geometric objects for processing, discretizing the continuous domain
into a mesh typically composed of triangles or quadrilaterals in two dimen-
sions, and tetrahedra or hexahedra in three dimensions. Mesh refinement tech-
niques seek to obtain either a better, finer decomposition of the input (or a
region of interest) in order to track smaller features of the mesh geometry, or
to obtain a quality locally refined mesh as required by the application.

These applications are found in the areas of computational geometry, com-
puter graphics, mechanical engineering, solid modeling, image processing, geo-
graphical information systems, and numerical simulation among others, mak-
ing the problem an interdisciplinary topic.

Historically, initial algorithms for mesh generation have been developed by
engineers, who were usually satisfied with the results obtained for their spe-
cific domains. Later, computational geometry researchers became interested
in designing algorithms that offer mathematical guarantees on the generation
of satisfying meshes [22].

Since, in practice, the time required to process a geometric object depends
on the size and quality of its decomposition, an initial goal of the mesh gen-
eration and refinement is to produce size-optimal meshes that conform to the

2 Carlos Bedregal and Maŕıa-Cecilia Rivara

geometry of the domain and satisfy the constraints on the shape and size of its
elements. A second goal is to produce locally refined meshes according to an
associated application, such as finite element analysis. Algorithms that offer
theoretical guarantees on the shape and size of the mesh produced are thus
desirable.

Longest-edge refinement algorithms for triangulations in two dimensions
were specially designed to work well with numerical techniques such as adap-
tive finite element methods and multigrid algorithms [14, 15], ensuring the
construction of good-quality irregular and nested triangulations. Longest edge
bisection algorithms proposed by Rivara [14, 16, 17] perform a local refine-
ment maintaining the geometric quality of the triangulation and increasing
the area covered by nearly equilateral triangles. These algorithms offer guar-
antees on the minimum angle lower bound and on the number of non-similar
triangles generated.

In this paper we present our recent results on the study of the computa-
tional cost of longest edge bisection algorithms. We focus on the behaviour
of the algorithm when propagating the refinement to a neighbor triangle,
bounding the number of points produced in order to maintain a conforming
triangulation. The paper is organized as follows: Section 2 discusses the pre-
vious work in the area of mesh refinement techniques, Section 3 describes the
longest edge bisection algorithm and its properties, Section 4 presents our
analysis of the algorithm based on the number of point it produces; finally,
Section 5 summarizes our results and current state of the research.

2 Previous Work

Most applications working with unstructured meshes require the mesh to be
conforming and to have good “quality.” A mesh is said to be conforming if
adjacent elements intersect only at either a common edge or a common vertex
or an entire face. Because of the domain constraints on shapes and sizes of
the elements, a mesh with a good geometry quality is also desirable. The
quality of a mesh is given by some measure of shape, such as a bound on
the aspect ratio of all the triangles or a bound on their internal angles. A
commonly used measure is the minimum angle α [19]. For example, elements
with “ideal” shape are typically those nearly equilateral and equiangular for
non-anisotropic applications.

A mesh generation algorithm must also consider the size of its output
since Steiner points (vertices which are not part of the input) are generally
added in order to achieve the shape bound. Adding too many points could
have a negative effect on the performance of the application. Then, a mesh is
considered size-optimal if the number of elements is within a constant factor
of the minimum number in any mesh of the input offering the same shape
bound.

A Study on Size-Optimal Longest Edge Refinement Algorithms 3

2.1 Mesh Refinement

Existing methods for generation and refinement of triangular and tetrahe-
dral meshes in 2- and 3-dimensions can be roughly classified as partitioning
methods and Delaunay-based methods [19]. Partitioning methods refine the
mesh by dividing some selected elements of the mesh. Baker et al. [1] pro-
posed the first algorithm to give shape guarantees on the triangulation. This
work was later extended by Bern et al. [3] and Melissaratos and Souvaine
[11], using quadtrees to offer both shape and size guarantees. Delaunay-based
methods, on the other hand, maintain a Delaunay triangulation during the
refinement, adding new points to the mesh that ensure the quality of the ele-
ments [6, 19, 7, 21]. Extensive research on practical mesh generation has been
also performed. See e.g. [2, 5, 10].

Our study will focus on longest edge triangulation refinement algorithms.
A triangulation is a decomposition of the input into simplices (triangles and
tetrahedrals), that meet at shared edges. Unstructured meshes are easier
to generate with algorithms using simplicial elements [4]. A study on non-
simplicial meshes (using quadrilateral and hexahedral elements) can be found
in the survey by Schneiders [20].

Longest edge bisection algorithms [14] are partitioning methods suitable
for the triangulation refinement problem. Given a conforming, non-degenerate
triangulation with acceptable quality (e.g. angles greater than or equal to an
angle α) of a polygonal region, the triangulation refinement problem consists
in the construction of a locally refined triangulation with a desired resolution
such that the smallest (or the largest) angle is bounded. For this paper, we
decompose the triangulation refinement problem into the following two sub-
problems:

(P1) Triangle refinement problem: given a quality acceptable triangula-
tion τ (of a polygonal region D) composed by Nτ triangles, all with
angles greater than or equal to an angle α, and given a target trian-
gle t ∈ τ , construct a conforming triangulation τ ′ such that t has been
refined once while maintaining the quality of the triangulation.

(P2) Local refinement problem: given a quality acceptable triangulation
τ (of a polygonal region D) composed by Nτ triangles, all with angles
greater than or equal to an angle α, and given a set of target trian-
gles Sref ⊆ τ , construct a conforming triangulation τ ′ such that every
t ∈ Sref has been refined once, and the quality of the triangulation is
preserved.

The local refinement problem can be considered as a generalization of the
triangle refinement problem, while the triangulation refinement problem can
be seen as the iterative solution of the local refinement problem, with triangle
set Sref containing triangles over a subregion of D that do not satisfy the
resolution parameter.

4 Carlos Bedregal and Maŕıa-Cecilia Rivara

Longest edge bisection algorithms perform an iterative longest edge bisec-
tion on the target triangles – and some of their neighbors – in order to produce
a conforming refined mesh. Additional to the non-degeneracy properties of the
iterative longest edge bisection of triangles, they offer guarantees on the mini-
mum angle lower bound and on the number of non-similar triangles generated
[17].

These algorithms have been used for developing software for partial differ-
ential equations [12], generalized for 3-dimensional refinement [13], applied on
finite element methods [10], and adapted to multithread parallelization [18].

3 Longest Edge Bisection Algorithms

A longest edge refinement algorithm works as follows: at each step of the
process the algorithm receives an input conforming triangulation of acceptable
geometric quality and a set of triangles to be refined; after performing a longest
edge bisection of the selected triangles (and some of their neighbors) it then
outputs a refined conforming triangulation. Algorithm 1 describes the original
longest edge bisection algorithm proposed by Rivara [14].

Algorithm 1 Longest edge bisection algorithm

Input: A quality triangulation τ and a set Sref of triangles to be refined
Output: A quality triangulation τ ′ such that each t ∈ Sref has been refined

while Sref 6= ∅ do
for each t in S do

Bisect t by the longest edge midpoint Q
Find t′, neighbor of t containing point Q
if t′ became non-conforming then

Add t′ to Sref

end if
end for

end while

A practical drawback of Algorithm 1 is the management of intermediate
non-conforming triangulations, which mainly depend on how the set Sref is
processed. Rivara introduced the Lepp-bisection algorithm [16], an elegant and
efficient improvement on the original algorithm. The main contributions of this
algorithm are the concepts of propagation paths and terminal edges, making it
possible to navigate through the set Sref performing local bisections of pairs of
triangles, also maintaining the mesh valid during the whole refinement process.
An advantage over Delaunay-based refinement methods is their robustness, as
bisection algorithms do not depend on complex computations.

Empirical evaluations on longest edge bisection algorithms have been pre-
viously performed [9, 23, 18].

A Study on Size-Optimal Longest Edge Refinement Algorithms 5

3.1 Lepp-bisection Algorithm

An edge E is called a terminal edge in triangulation τ if E is the longest edge
of every triangle that shares E, and the triangles sharing E are called terminal
triangles [17]. For the 2-dimensional scenario, if E is shared by two terminal
triangles then E is an interior edge; if E is shared by a single terminal triangle
then E is a boundary or constrained edge. Figure 1 illustrates these concepts.

A
B

t0

t1 t2

t3

(a)

t5 t6

t7

C

D

t4

(b)

Fig. 1: (a) AB is an interior terminal edge shared by terminal triangles {t2, t3}
of Lepp(t0) = {t0, t1, t2, t3}; (b) CD is a boundary terminal edge with terminal
triangle {t7} of Lepp(t4) = {t4, t5, t6, t7}

For any triangle t0 in τ , the longest edge propagating path of t0, Lepp(t0), is
the ordered sequence {tj}N+1

0 , where tj is the neighbor triangle on the longest
edge of tj−1, and longest edge(tj) > longest edge(tj−1), for j = 1, . . . , N .
Edge E = longest edge(tN+1) = longest edge(tN) is an interior terminal
edge in τ and this condition determines N . Therefore, either E is shared by
the couple of terminal triangles (tN , tN+1) if E is an interior edge in τ , or E is
shared by a unique terminal triangle tN with boundary (constrained) longest
edge.

The Lepp-bisection algorithm [17] for the triangle refinement problem can
be simply described with two basic steps: starting from an initial triangle t0,
it first finds Lepp(t0), reaching its two terminal triangles tN and tN+1 which
share terminal edge E; then, the longest edge bisection is done by the midpoint
of E – refining triangles tN and tN+1. This process is repeated until initial
triangle t0 is refined. Algorithm 2 presents a generalization of the algorithm
for the local refinement problem.

Figure 2 illustrates the Lepp-bisection refinement process. Terminal tri-
angles of Lepp(t0) are t2 and t3, which are bisected on their longest edge
(Fig. 2(a)). Lepp(t0) is recomputed with terminal triangle t1 and triangle t′2
(a sub-triangle of t2). These triangles are then refined and a last computation
of Lepp(t0) occurs, with terminal triangle t0 and triangle t′1 (a sub-triangle
of t1). This final bisection refines starting triangle t0 (Fig. 2(b)). Since the
refinement process starts at the terminal triangles (stopping at the starting
triangle) we can say that the Lepp-bisection algorithm works backwards.

6 Carlos Bedregal and Maŕıa-Cecilia Rivara

Algorithm 2 Lepp-bisection algorithm

Input: A quality triangulation τ and a set Sref of triangles to be refined
Output: A quality triangulation τ ′ such that each t ∈ Sref has been refined

for each t in Sref do
while t remains in τ do

Find Lepp(t), terminal triangles t1, t2 and terminal edge l. Triangle t2 can be
null for boundary l
Select point (P, t1, t2, l)
Perform (longest edge) bisection by P of triangles t1, t2
Update Sref

end while
end for

A
B

1

t0

(a)

A
B

1

2

3

(b)

Fig. 2: Refining triangle t0 of triangulation in Fig. 1(a) with Lepp(t0) =
{t0, t1, t2, t3}: (a) first vertex 1 is added by the bisection of the terminal tri-
angles sharing edge AB; (b) final triangulation

3.2 Properties of the bisection algorithms

The main properties of the longest edge algorithms can be summarized as
follows [14]:

Lemma 1. The iterative and arbitrary use of the algorithms only produces tri-
angles whose smallest interior angles are always greater than or equal to α/2,
where α is the smallest interior angle of the initial triangulation. Further-
more every triangle generated is similar to one of a finite number of reference
triangles.

Lemma 2. Longest edge refinement algorithms always terminate in a finite
number of steps with the construction of a conforming triangulation.

Lemma 3. Any triangulation τ generated by means of the iterative use of
the algorithms satisfies the following smoothness condition: for any pair of
side-adjacent triangles t1, t2 ∈ τ (with respective diameters h1, h2), it holds

that min(h1,h2)
max(h1,h2)

≥ k > 0, where k depends on the smallest angle of the initial

triangulation.

A Study on Size-Optimal Longest Edge Refinement Algorithms 7

Lemma 4. For any triangulation τ , the global iterative application of the al-
gorithm (the bisection of all the triangles in the preceding iteration) covers, in
a monotonically increasing form, the area of τ with quasi-equilateral triangles
(with smallest angles ≥ π/6).

Proof of Lemma 2 is based on the facts that (1) the propagation of the
refinement moves toward bigger triangles of the mesh, and (2) every mesh
has bounded smallest angle. The smoothness property of Lemma 3 follows
from the bound on the smallest angle of Lemma 1. Lemma 4 refers to the
generation of more equilateral triangles with every iteration, also isolating
the worst angles.

3.3 Similarity classes of triangles

The study by Gutierrez et al. [8] on the complexity of the bisection of a trian-
gle introduced a classification of triangles based on the number of non-similar
triangles produced by the iterative bisection of a triangle. This study defined
six main similarity classes of triangles considering the possible geometric po-
sitions where vertex C of a triangle t(ABC) may lie (see Fig. 3). Then, for
any triangle t, the number of iterative bisections performed until no further
non-similar triangles are generated is O(α−1), where α is the smallest angle
of t.

III

IV
V

VI

II

I

A B

Fig. 3: Regions defining the classes of triangles t(ABC). Virtual vertex C lies
in one of the regions defining a triangle t with AB ≥ BC ≥ CA

It is proved in [8] that the iterative bisection of Class I triangles will gen-
erate at most four non-similar triangles (Lemma 2 in [8]). Figure 4 shows a
Class I triangle t(ABC) and the triangles generated after five bisections. The
initial bisection generates two non-similar triangles t1(ADC) and t2(BCD).
The bisection of t1 generates one non-similar triangle, t1,1(DCH), because
t1,2(ADH) is similar to initial triangle t. The bisection of t1,1 generates tri-
angles t1,1,1(CHF) and t1,1,2(HDF), which are similar to triangles t1 and t2

8 Carlos Bedregal and Maŕıa-Cecilia Rivara

respectively. Finally, iterative bisections on t2 generate only one non-similar
triangle, t2,1(CDE).

It is also proved in [8] that for triangles of Classes II to VI, some new
non-similar triangles are produced until triangles of Class I are created, which
finishes the creation of new triangles. Note that for some of these cases the
bisection of triangle t(ADC) in Fig. 4 needs to be performed either on the
edge CD or AD, while the bisection of t2,1(CDE) can be performed on edge
CE.

A B

C

H E

D

F

Fig. 4: Iterative bisections on a Class I triangle

The analysis of longest edge bisection refinement algorithms, described in
Sec. 4, uses a similar classification to estimate the number of bisections needed
to obtain a conforming refined mesh, specifically, the number of bisections
needed to obtain “good” triangles on difficult regions.

4 Analysis of the Longest Edge Bisection Algorithm

Consider that the algorithm introduces a number of Nref new mandatory
points needed to achieve the required triangle resolution, and a number of
Nprop new propagation points required for the mesh to remain valid. The
computational cost of the algorithm will depend on (1) N = Nref + Nprop,
the number of new points inserted into the mesh, and (2) the cost of inserting
these points. For (1), Nref is bounded by the refinement parameters, so our
study will focus on bounding Nprop. For (2), using appropriate data structures
that allow easy access to a triangle’s neighborhood information, the cost of
insertion becomes linear in N , independently of the size of the triangulation
and the number of iterations performed [14].

In the rest of the section we analyze the number of new points (and tri-
angles) generated by the longest edge bisection algorithm. We start with an
analysis of the number of points inserted by the propagation of refining a sin-
gle triangle; then we extend the results to the local refinement problem and
the case of iterative refinement around a vertex.

A Study on Size-Optimal Longest Edge Refinement Algorithms 9

4.1 Refining a non-conforming triangle

Our goal is to analyze the behavior of the original longest edge bisection al-
gorithm described in Algorithm 1 over individual triangles. Considering that
the algorithm consistently selects the longest edge of a triangle for non-unique
longest edges, the order in which set Sref is processed does not affect the out-
put of the algorithm. This also ensures that the original bisection algorithm
and the Lepp-bisection algorithm obtain the same results. To study the re-
finement propagation we will analyze the behavior of the iterative bisection
on a triangle t ∈ Sref in order to get a conforming triangulation; according
to Algorithm 1, we will consider that the next triangles t∗ to be refined are
the ones generated by the bisection of the last triangle.

After the bisection of a target triangle t, whenever a non-conforming tri-
angle t′ is produced, the mesh is made conforming according to one of the
three scenarios of Fig. 5:

Case 1: Q lays on the longest edge of t′. This case is trivial since t and t′

share the longest edge. The bisection of t′ by the midpoint of l is enough
to obtain a valid mesh (see Fig. 5(a)). This case is analogous to refining
the two terminal triangles of the Lepp.

Case 2: Q lays on the second longest edge of t′. In this case a second bisection
is required to obtain a valid mesh. The first bisection corresponds to the
longest edge bisection of t′, inserting point Q1 and splitting t′ in two
triangles. Consider t′1 as the non-conforming triangle containing Q. Since
Q lays on the longest edge of t′1 (which corresponds to Case 1), the mesh
is made conforming by bisecting t′1 by the midpoint of l (see Fig. 5(b)).

Case 3: Q lays on the smallest edge of t′. This case is more complex to solve
as the number of points inserted inside t′ will depend on the triangle’s
similarity class (see Fig. 5(c)). The number of points inserted in t′ is
bounded by O(log 1

α), where α represents the smallest angle of t′. 1

For Cases 1 and 2, triangle t′ is made conforming independently of the
triangle’s similarity class. The analysis of Case 3 is further described in Sec.
4.2.

4.2 Refining triangles by the smallest edge

When a non-conforming triangle is produced after adding a point on its
smallest edge (as described in Case 3 of Sec. 4.1), the triangulation is made
valid after performing a few additional longest edge bisections inside the non-
conforming triangle, i.e. until the hanging point is connected using one of the
new edges.

The number of bisections (and triangles) required to obtain a conforming
triangle can be determined by the similarity class [8] of the triangle being
processed, as described by the following lemma.

1Our logarithms are base 2.

10 Carlos Bedregal and Maŕıa-Cecilia Rivara

A B

C

Q

D

(a) Case 1

A

C

Q

D

Q1

B

(b) Case 2

A B

C

Q

D

(c) Case 3

Fig. 5: Longest edge bisection of triangle a t(ABC) producing non-conforming
neighbor triangle t′(ADB): (a) AB is the longest edge of t′; (b) AB is the
second longest edge of t′; (c) AB is the smallest edge of t′

Lemma 5. In order to make valid a non-conforming triangle (with smallest
angle α) when a point is hanging at the midpoint of its smallest edge, the
number of new points (and triangles) produced by the longest edge bisection
algorithm is:

(1) For a Class I triangle it produces 3 triangles and 1 new point.
(2) For a Class II triangle it produces 6 triangles and 3 new points.
(3) For a Class III triangle it produces at most 6 + 3k triangles and 3 + 2k

points, for a constant k = dlog(π6α)/ log(3
2)e.

(4) Class IV triangles behave no worse than Class III triangles.
(5) Class V and Class VI triangles present the same behavior as Class I tri-

angles.

Proof. Consider a triangle t(ABC), with smallest angle α and AB ≥ BC ≥
CA, and point Q located at the midpoint of its smallest edge CA making
the triangle non-conforming. Also consider point Q1 inserted after the first
bisection of t by the midpoint of its longest edge AB, producing triangles

A Study on Size-Optimal Longest Edge Refinement Algorithms 11

A B

C

Q

Q1

t1 t2

Fig. 6: Non-conforming triangle t(ABC) produced by the introduction of point
Q on its smallest edge CA. Triangles t1(AQ1C) and t2(CQ1B) are obtained
after the initial longest edge bisection of t

t1(AQ1C) and t2(CQ1B), where t1 is the non-conforming triangle containing
point Q (see Fig. 6). Then, for each similarity class we can prove that:

1. Class I (AQ1 ≤ CQ1 ≤ CA): Edge CA becomes the longest edge of
triangle t1, so the longest edge bisection on t1 is enough to make the
triangulation valid, while triangle t2 remains unaffected (see Fig. 7(a)). In
total, one new point is produced.

2. Class II (AQ1 ≤ CA ≤ CQ1): Triangle t1 belongs to Class I, so two
bisections are performed on it. Point Q2 inserted on edge CQ1, making
neighbor triangle t2 non-conforming. Since AQ1 = Q1B ≤ CQ1, point
Q2 is affecting the second longest edge of t2 (recall Case 2), two extra
bisections are needed to make the triangulation valid (see Fig. 7(b)). In
total, three new points are produced.

3. Class III (CA ≤ AQ1 ≤ CQ1): Triangle t1 will either belong to Class I,
II or III (see Fig. 7(c)). For Classes I and II the number of bisections and
points produced inside t1 is constant as described above. In either case
point Q2 is inserted on edge CQ1, making triangle t2 non-conforming.
Since CQ1 is again the second longest edge of t2 (corresponding to Case
2), two bisections are required to make the triangulation valid. On the
other hand, if t1 still belongs to Class III, it is iteratively bisected until
a Class I or II triangle is produced which contains Q in no more than
dlog(π6α)/ log(3

2)e steps. Consider i the number of steps performed, in the
i-th iteration triangle ti1 inserts point Qi1, affecting the second longest edge
of neighbor ti2. Since AQ1 = Q1B ≤ CQ1, two bisections on ti2 are needed
to make the triangulation valid. This 2-bisection pattern is repeated on
each tj2, for j = 1, . . . , i − 1. Finally, at most 3 + 2dlog(π6α)/ log(3

2)e new
points are produced.

4. Class IV (CA,CQ1 ≤ AQ1): Triangle t1 could still belong to Class IV,
but after no more than dlog(π6α)e iterative bisections, the non-conforming
triangle containing Q will either belong to Class I, II, III, V or VI (see Fig.
7(d)). Considering i the number of steps until producing a Class I, V or
VI triangle containing Q, additional bisections are propagated on each tj2
for j = 1, . . . , i only if there was a triangle tj1 that belonged to Class II or
III, otherwise no propagation is required. Although this class should not

12 Carlos Bedregal and Maŕıa-Cecilia Rivara

perform worse than Class III, for an α close to 0 the propagation could
produce an extra point in each step, so the number of new points would
be bounded by O(log2(π6α)).

5. Class V and VI (CQ1 ≤ AQ1 ≤ CA): The behavior for these triangles
is the same as in Class I since the affected edge CA becomes the longest
edge of t1. ut

A B

C

Q

Q1

(a) Classes I, V and VI

Q2

A B

C

Q

Q1

Q3

(b) Class II

A B

C

Q

Q1

Q2 Q3
t1

(c) Class III

A B

C

Q

Q1

t1

(d) Class IV

Fig. 7: Behaviour of the longest edge bisection algorithm for each similarity
class when a point Q is affecting the smallest edge of non-conforming triangle
t(ABC)

Note that the number of new triangles produced is one more than the
number of bisections performed. Thus, for the triangle refinement problem
the algorithm performs k = O(log 1

α0
) bisections on each triangle refined by

propagation, with α0 the smallest angle of the triangles affected. Consider-
ing m the number of triangles effectively refined, the longest edge refinement
algorithm produces O(km) new points. Working with quality acceptable tri-
angulations, the value of k becomes negligible.

For |Sref | > 1, the local refinement problem, consider M = Mref +Mprop

the number of triangles effectively refined, where Mref = |Sref | is the number
of triangles initially selected for refinement, and Mprop is the number of tri-
angles refined due to propagation. The following lemma summarizes the cost
of the algorithm for the local refinement problem.

Lemma 6. A longest edge bisection refinement algorithm inserts at most
O(kM) new points into a triangulation with smallest angle α0, where M is
the number of triangles effectively refined and k = O(log 1

α0
).

A Study on Size-Optimal Longest Edge Refinement Algorithms 13

The algorithm produces the most points when the refinement propagates
to the smallest edge of the neighbor triangle as discussed in Sec. 4.1. Then,
the proof of the lemma follows from Lemma 5. ut

For a quality acceptable triangulation the value of k is negligible, and
the number of new points produced becomes linear in M . For example, in a
triangulation with α0 ≥ π/6 the algorithm inserts at most 3M new points,
since no triangle belongs to Classes III or IV. On the other hand, if we allow
Class III or IV triangles in the triangulation, for example with α0 ≥ π/18,
these triangles could not be iteratively refined more than three times.

In the worst possible scenario, the propagation affects every triangle of a
bad quality triangulation (e.g. a triangulation covered by spikes of Class III
or IV triangles), so every triangle of the triangulation is refined during a first
iteration. It is important to note that the algorithm produces Class I, V and
VI triangles to solve hanging points in non-conforming triangles. The effect
of this is that “better” quality triangles tend to cover the propagation path,
so future iterations would be processed faster and their propagations reduced
as the smallest angles are isolated.

When multiple hanging points are inserted over the same edge (e.g., due
to the iterative bisection of Class III or IV triangles), the algorithm processes
non-conforming neighbor solving the hanging points in the same order they
were produced. Again, as better triangles are produced in this area, solving
the following hanging points would insert a constant number of new points.

4.3 Iterative refinement around a vertex

Iterative refinement of the mesh reduces the number of bisected triangles since
the propagation is reduced. The area covered by affected triangles is also
reduced. In practice, the number of triangles refined by propagation is less
than five. Additionally, iterative refinement produces more quasi-equilateral
triangles (isolating the bad triangles), so non-conforming issues are solved
more quickly.

This is related to the fractal property, observed after successive iterations
of the refinement around a vertex. After a number of iterations the algorithm
performs repetitive patterns of bisections – called fractals – as it gets “closer”
to the vertex being refined. In this sense, the iterative refinement maintains
a locality on the new triangles generated, reducing the propagation in each
iteration. The following lemma address the fractal property as stated in [17].

Lemma 7. For any vertex Q, use the algorithm to repeatedly refine each tri-
angle of vertex Q. Then after a finite number of triangle refinements around
Q, a fixed angle molecule is obtained (the angles of vertex Q are not parti-
tioned if the refinement follows). In addition, further refinement around Q
reproduces the same fractal geometry.

The proof of the lemma is given by the fact that if the mesh has smallest
angles greater than or equal to α, then vertex Q is shared by at most 2π/α

14 Carlos Bedregal and Maŕıa-Cecilia Rivara

triangles. Then, from the results of Sec. 3.3 we can note that the number of
non-similar triangles is finite, so after a finite number of partitions the triangle
geometry around vertex Q is reproduced. ut

Consider triangle t with α1, α2 and α3 the biggest, second biggest and
smallest angle of t respectively. The speed by which the fractal property is
observed inside t will depend on the angle in which Q is located:

• If Q corresponds to the smallest angle α3, iterative refinement will generate
a zig-zag pattern toward the vertex (see Fig. 8(a)). This happens because
every two bisections, the triangle containing Q is similar to t.

• If Q corresponds to the biggest angle α1 or second biggest angle α2, it-
erative refinement will split the triangles into smaller ones, until the new
triangles starts generating the aforementioned zig-zag pattern (see Fig.
8(c) and Fig. 8(b)).

α3

(a)

α2

(b)

α1

(c)

Fig. 8: Examples of the fractal property after the iterative refinement over a
vertex Q: (a) over the smallest angle; (b) over the second biggest angle; (c)
over the biggest angle

The current stage of our research is focused on using the results of Lemma
5 in Sec. 4.2 to bound the cost of the iterative refinement around a vertex.
Based on Lemma 7, our hypothesis is that the propagation is reduced in each
iteration until the work of refining the triangles around the vertex becomes
constant (i.e., the fractal pattern appears). Since only initial iterations would
propagate to more triangles, an amortized cost analysis would be required to
establish the cost of the algorithm.

5 Conclusions and Future Work

In this paper we presented a new study on the size optimality of the longest
edge bisection algorithm for the refinement of triangulations in two dimen-
sions. In practice, longest edge algorithms for iterative refinement perform
well, refining only a constant number of triangles in order to maintain a con-
forming triangulation. These algorithms currently offer guarantees only on the
shape of the output triangulation, so our study aimed to establish a theoretical
bound on its size.

A Study on Size-Optimal Longest Edge Refinement Algorithms 15

The study was based on the behavior of the algorithm propagation. When
propagating to the longest edge of a neighbor triangle, the propagation stops.
For the second longest edge, propagation moves in only one direction. We
focused the analysis on the non-trivial scenario where propagation moves to
the smallest edge of a triangle, as it might insert more points. Even for this
scenario, the number of points produced by the algorithm remains within a
constant factor of the number of mandatory points required by the application.
This factor will depend on the smallest angle in the triangulation.

Currently we are working on a tighter bound on the size of the propagation
produced by the refinement. Our hypothesis is that iterative refinement re-
duces the propagation to a constant factor, corresponding to fractal patterns,
so that the cost associated with the propagation would be amortized.

We are also working on a more detailed classification of the triangles based
on the behavior of the propagation. For example, there are triangles from sub-
regions of Class IV that behave similarly to Class I triangles.

For future work we plan to extend the results to the vertex refinement
problem introduced in Sec. 4.3. The analysis of this problem is similar to the
iterative refinement of bad quality triangles reviewed in Sec. 4.2. We also plan
to extend these theoretical results to other longest-edge refinement algorithms
such as Lepp-Delaunay [16].

References

1. B. S. Baker, E. Grosse, and C. S. Rafferty. Nonobtuse triangulation of polygons.
Discrete & Computational Geometry, 3:147–168, 1988.

2. T. Baker. Automatic mesh generation for complex three-dimensional regions
using a constrained delaunay triangulation. Engineering with Computers, 5:161–
175, 1989. 10.1007/BF02274210.

3. M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. Journal
of Computer and System Sciences, 48(3):384–409, June 1994.

4. M. W. Bern and D. Eppstein. Mesh generation and optimal triangulation. In
D.-Z. Du and F. K.-M. Hwang, editors, Computing in Euclidean Geometry,
number 1 in Lecture Notes Series on Computing, pages 23–90. World Scientific,
1992.

5. H. Borouchaki and P. L. George. Aspects of 2-d delaunay mesh generation.
International Journal for Numerical Methods in Engineering, 40(11):1957–1975,
1997.

6. L. P. Chew. Constrained delaunay triangulations. In Proceedings of the third
annual symposium on Computational geometry, SCG ’87, pages 215–222, New
York, NY, USA, 1987. ACM.

7. H. Edelsbrunner. Triangulations and meshes in computational geometry. Acta
Numerica, 9:133–213, 2000.

8. C. Gutierrez, F. Gutierrez, and M.-C. Rivara. Complexity of the bisection
method. Theoretical Computer Science, 382(2):131–138, 2007.

9. M. T. Jones and P. E. Plassman. Computational results for parallel unstructured
mesh computations. Technical report, Knoxville, TN, USA, 1994.

16 Carlos Bedregal and Maŕıa-Cecilia Rivara

10. M. T. Jones and P. E. Plassmann. Adaptive refinement of unstructured finite-
element meshes. Finite Elements in Analysis and Design, 25(1-2):41–60, 1997.

11. E. A. Melissaratos and D. L. Souvaine. Coping with inconsistencies: a new
approach to produce quality triangulations of polygonal domains with holes. In
Proceedings of the eighth annual symposium on Computational geometry, SCG
’92, pages 202–211, New York, NY, USA, 1992. ACM.

12. S. N. Muthukrishnan, P. S. Shiakolas, R. V. Nambiar, and K. L. Lawrence.
Simple algorithm for the adaptive refinement of three dimensional problems
with tetrahedral meshes. AIAA Journal, 33(5):928–932, 1995.

13. R. V. Nambiar, R. S. Valera, K. L. Lawrence, R. B. Morgan, and D. Amil. An
algorithm for adaptive refinement of triangular element meshes. International
Journal for Numerical Methods in Engineering, 36(3):499–509, 1993.

14. M.-C. Rivara. Algorithms for refining triangular grids suitable for adaptive and
multigrid techniques. International Journal for Numerical Methods in Engineer-
ing, 20(4):745–756, 1984.

15. M.-C. Rivara. Design and data structure of fully adaptive, multigrid, finite-
element software. ACM Transactions on Mathematical Software, 10(3):242–264,
1984.

16. M.-C. Rivara. New longest-edge algorithms for the refinement and/or improve-
ment of unstructured triangulations. International Journal for Numerical Meth-
ods in Engineering, 40(18):3313–3324, 1997.

17. M.-C. Rivara. Lepp-bisection algorithms, applications and mathematical prop-
erties. Applied Numerical Mathematics, 59(9):2218–2235, 2009.

18. M.-C. Rivara, P. Rodriguez, R. Montenegro, and G. Jorquera. Multithread
parallelization of lepp-bisection algorithms. Applied Numerical Mathematics,
62(4):473–488, 2012.

19. J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18(3):548 – 585, 1995.

20. R. Schneiders. Quadrilateral and Hexahedral Element Meshes. In J. Thompson,
B. Soni, and N. Weatherill, editors, Handbook of Grid Generation. CRC Press,
1999.

21. J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications, 22(1-3):21–74, 2002.

22. J. R. Shewchuk. Unstructured mesh generation. In U. Naumann and O. Schenk,
editors, Combinatorial Scientific Computing, chapter 10, pages 259–298. CRC
Press, 2011.

23. J. P. Suárez, A. Plaza, and G. F. Carey. The propagation problem in longest-
edge refinement. Finite Elements in Analysis and Design, 42(2):130–151, Nov.
2005.

